

Chapter 12. Loading and Manipulating Data
A lot of data is managed in and never leaves an Excel worksheet. But much of the data that Excel users
work with comes from external databases such as SQL Server, Oracle, or Microsoft Access. You can
work with data in various ways in Excel, usually by importing an entire table of data from a database or
by using a query to import data that meets specific criteria. From a developer's perspective, you also
have great programmatic control over the data you expose to users.

The Excel object model lets you create and manipulate queries from a variety of sources using the
QueryTable object. If you want more programmatic control over your data, you have a choice of two
programming interfaces. The ActiveX Data Objects (ADO) interface gives you access to data from a
variety of data sources. The Data Access Objects (DAO) interface, which is native to Access databases,
provides an easy-to-use interface for working with Access data.

In this chapter, I show how to:

Work with QueryTable objects

Work with Parameter objects

Work with the ADO and DAO database programming interfaces

This chapter contains reference information for the following objects and their related collections:
QueryTable, Parameter, ADO.Command, ADO.Connection, ADO.Field, ADO.Parameter, ADO.Record,
ADO.RecordSet, DAO.Database, DAO.DbEngine, DAO.Document, DAO.QueryDef, and DAO.Recordset.

Code used in this chapter and additional samples are available in ch12.xls.

12.1. Working with QueryTable Objects

The QueryTable object gives you programmatic access to the database queries that are native to Excel.
These database queries let you retrieve data from a variety of data sources and insert the data into your
worksheets. In the Excel interface, you create a database query by clicking Import External Data, New
Database Query on the Data menu.

In code, you create a database query by adding a QueryTable object to the QueryTables collection.
When you do this, you supply a connection string to your data source as well as a destination on your
worksheet where you want the results of the query to be inserted. For example, the following code
inserts information for a specific product from the Products table of the Northwind Traders sample

Page 1 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

database into the current worksheet, starting with the first cell of the worksheet:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh

You can also use the ADO or DAO programming interfaces to create a recordset, and use the resulting
Recordset object as your data source. To use either of these programming interfaces in Excel, you need
to add a reference to the appropriate object library. On the Tools menu in the VBA programming
environment, select References, then select the appropriate object library from the list. For example, the
following code creates a query table using the Employees table in the Northwind Traders sample
database and inserts the recordset name and data in the active worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 "OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

The ADO and DAO programming interfaces are discussed later in this chapter.

12.2. QueryTable and QueryTables Members

Use the QueryTables collection to create new query tables and add them to a worksheet. Use the
Worksheet object's QuertyTables property to get a reference to this collection. Use the QueryTable
object to refresh the data in the query table and to control other aspects of the query. The QueryTables
and QueryTable objects have the following members . Key members (shown in bold) are covered in the
following reference section:

Page 2 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Web query members are covered in Chapter 24.

Add1 AdjustColumnWidth

AfterRefresh Application2

BackgroundQuery BeforeRefresh
CancelRefresh CommandText
CommandType Connection

Count1 Creator2

Delete Destination

EditWebPage EnableEditing

EnableRefresh FetchedRowOverflow
FieldNames FillAdjacentFormulas

Item1 ListObject

MaintainConnection Name

Parameters Parent2

PostText PreserveColumnInfo

PreserveFormatting QueryType
Recordset Refresh
Refreshing RefreshOnFileOpen
RefreshPeriod RefreshStyle
ResetTimer ResultRange

RobustConnect RowNumbers

SaveAsODC SaveData
SavePassword SourceConnectionFile

SourceDataFile TextFileColumnDataTypes

TextFileCommaDelimiter TextFileConsecutiveDelimiter
TextFileDecimalSeparator TextFileFixedColumnWidths
TextFileOtherDelimiter TextFileParseType
TextFilePlatform TextFilePromptOnRefresh
TextFileSemicolonDelimiter TextFileSpaceDelimiter

TextFileStartRow TextFileTabDelimiter

Page 3 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Creates a new query table and adds it to the worksheet. Returns a QueryTable object.

Set this property to False to disable the automatic adjustment for the best fit for columns in the specified
query table.

True refreshes data in the query table asynchronously. False refreshes data synchronously. Default is
True.

The BeforeRefresh and AfterRefresh events occur whether or not the query is refreshed
synchronously or asynchronously. When synchronous, both events occur before the Refresh method
completes. When asynchronous, only the BeforeRefresh event occurs before the Refresh method
completes, then program flow continues.

TextFileTextQualifier TextFileThousandsSeparator
TextFileTrailingMinusNumbers TextFileVisualLayout

WebConsecutiveDelimitersAsOne WebDisableDateRecognition

WebDisableRedirections WebFormatting

WebPreFormattedTextToColumns WebSelectionType

WebSingleBlockTextImport WebTables
1 Collection only

2 Object and collection

querytables.Add(Connection, Destination, [Sql])

Argument Description
Connection A string or object reference identifying the source of the data.

Destination A Range object identifying the upper-lefthand corner of the destination of the query
table.

Sql
If the Connection argument is an ODBC data source, this argument is a string
containing the SQL query to perform. Otherwise, including this argument either causes
an error or is ignored.

querytable.AdjustColumnWidth [= setting]

querytable.BackgroundQuery[= setting]

Page 4 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Cancels an asynchronous query. You can't refresh or delete a query while that query has refresh
pending. When working with asynchronous queries, you should check the query table's Refreshing
property and (possibly) cancel the pending refresh before deleting or refreshing that query again.

The following code cancels any pending refreshes before refreshing a query:

If qt.Refreshing Then qt.CancelRefresh
qt.Refresh

Sets or returns the command string for the specified query table. The following code returns the results
of a query with the specified command string:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"
Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))

qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh

Sets or returns the type of command string used by the specified query table. The type can be xlCmdSQL,
a SQL string (default); xlCmdCub, a cube name for an online analytical processing (OLAP) data source;
xlCmdDefault, command text that the OLE DB provider understands; or xlCmdTable, a table name for
accessing OLE DB data sources.

Sets or returns the connection string for the specified query table. The following code creates a query
table, returns its results, and displays the connection string in cell A6:

Dim strConn As String
Dim strSQL As String

querytable.CancelRefresh

querytable.CommandText[= setting]

querytable.CommandType[= setting]

querytable.Connection[= setting]

Page 5 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh
ActiveSheet.Range("A6") = qt.Connection

Deletes a query table. If the query table is refreshing asynchronously, Delete causes an error. Deleting a
query table does not remove data from cells on a worksheetit just removes the ability to refresh those
cells from their data source.

The following code deletes all of the query tables on the active worksheet and clears their data:

Dim qt As QueryTable
For Each qt In ActiveSheet.QueryTables
 If qt.Refreshing Then qt.CancelRefresh
 qt.Delete
Next
ActiveSheet.UsedRange.Clear

Returns a Range object containing the cell in the upper-lefthand corner of the query table.

The following code selects the first cell of a query table on the active worksheet and asks if the user
wants to delete it:

For Each qt In ActiveSheet.QueryTables
 qt.Destination.Select
 If MsgBox("Delete query table?", vbYesNo) = vbYes Then
 If qt.Refreshing Then qt.CancelRefresh
 qt.ResultRange.Clear
 qt.Delete
 End If
Next

True allows the user to change the query definition through the Data menu's Import External Data

querytable.Delete

querytable.Destination

querytable.EnableEditing[= setting]

Page 6 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

submenu. False disables the Import External Data menu items. Default is True.

True allows the user to refresh the query through the Data menu's Refresh Data item. False disables the
Refresh Data menu item. Default is True.

True if the number of rows returned by the last refresh of the specified query table is greater than the
available number of rows.

True if field names from the data source are displayed as column headings for the returned data. The
following code specifies that field names will not be displayed in the query table:

ActiveSheet.QueryTables(1).FieldNames = False

True causes calculated cells to the right of the query table to be repeated for each row when the query
table is refreshed. False does not repeat adjacent formulas. Default is False.

Set FillAdjacentFormulas to True in order to create row totals, or other calculations, for each row in
the query table automatically. To use this feature, create a query table, add a formula for the first row in
the query table, set FillAdjacentFormulas to True, then refresh the data. For more information, see
Chapter 24.

This property returns True if the connection to the specified query table's data source is maintained after
a refresh operation. You can set this property for queries to OLEDB sources only.

Returns a Parameters collection object that represents the parameters of the specified query table.

querytable.EnableRefresh[= setting]

querytable.FetchedRowOverflow[= setting]

querytable.FieldNames[= setting]

querytable.FillAdjacentFormulas[= setting]

querytable.MaintainConnection[= setting]

querytable.Parameters

Page 7 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Working with Parameter objects is covered later in this chapter.

True preserves the column sorting, filtering, and layout information when the specified query table is
refreshed. False does not preserve formatting. Default is False.

True preserves the cell formatting of the query table when data is refreshed. False does not preserve
formatting. Default is False.

If PreserveFormatting is True and a refresh imports new rows of data, formatting common to the first
five rows of the query table is automatically applied to the new rows.

Returns a value identifying the type of data source used by the query table. Possible values are:

Sets or returns a Recordset object that serves as the data source for the specified query table. The
following code creates a query table using the Employees table in the Northwind Traders sample
database as the recordset and inserts the name of the recordset as well as the recordset data in the active
worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _

querytable.PreserveColumnInfo[= setting]

querytable.PreserveFormatting[= setting]

querytable.QueryType[= setting]

xlTextImport
xlOLEDBQuery
xlWebQuery
xlADORecordset
xlDAORecordSet
xlODBCQuery

querytable.Recordset[= setting]

Page 8 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

 "OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

Refreshes a query table from its data source. Returns True if the refresh was submitted successfully,
False if the user canceled the refresh.

Most types of query table store connection and data source information that is used by Refresh. The
exception is recordset queriesyou must set a new recordset before calling Refresh for query tables
based on recordsets. See the Recordset property for an example.

When refreshing asynchronously, check the Refreshing property before calling Refresh. Otherwise,
pending refreshes will cause an error. The following code cancels any pending asynchronous refresh
before refreshing a query table:

If qt.Refreshing Then qt.CancelRefresh
qt.Refresh

Returns True if an asynchronous refresh is pending for this query table, False if no refresh is pending.

True refreshes the query table when the workbook is opened; False does not refresh on open. Default is
False.

querytable.Refresh([BackgroundQuery])

Argument Description

BackgroundQuery True refreshes the data asynchronously; False refreshes the data synchronously.
Default is True.

querytable.Refreshing

querytable.RefreshOnFileOpen[= setting]

Page 9 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Sets or returns the number of minutes between automatic refreshes. The default is 0, for no automatic
refreshing. You can set automatic refreshing on synchronous or asynchronous queries. RefreshPeriod
is ignored for query tables created from recordsets.

The following code creates a query table from an ODBC data source and sets the query table to refresh
once a minute:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn="ODBC;DRIVER=SQL Server;SERVER=.;UID=Jeff;APP=Microsoft Office "& _
"XP;WSID=WOMBAT2;DATABASE=pubs;Trusted_Connection=Yes"
strSQL = "SELECT titles.title, titles.price, titles.pubdate, titles.ytd_sales
FROM pubs.dbo.titles titles"
Set qt = ActiveSheet.QueryTables.Add(strConn, [QueryDestination], strSQL)
qt.RefreshPeriod = 1
qt.Refresh

Determines how the query affects surrounding items on the worksheet when the query table is refreshed.

The following code modifies an existing query table to insert new rows on the worksheet as needed,
shifting existing items on the worksheet down:

Set qt = ActiveSheet.QueryTables(1)
qt.RefreshStyle = xlInsertEntireRows
qt.Refresh

If a subsequent query reduces the number of records returned, the contents of the query table are
replaced, but the rows that were previously shifted down are not shifted back up again as they would be
if RefreshStyle was set to xlInsertDeleteCells.

querytable.RefreshPeriod[= setting]

querytable.RefreshStyle[= setting]

Setting Description

xlInsertDeleteCells Inserts or deletes new rows and columns created by the query, moving
surrounding items up or down and to the right or left as needed (default).

xlOverwriteCells No new rows or columns are added to the worksheet. Surrounding items are
overwritten as needed.

xlInsertEntireRows Inserts a new row for each record returned by the query. Shifts existing items
down as needed to accommodate the number of records returned.

Page 10 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Resets the timer used for periodic queries, in effect delaying when a query occurs. Use the
RefreshPeriod property to automatically refresh a query periodically.

Returns the range containing the results of the query. For example, the following code clears the results
from a query table on the active worksheet:

ActiveSheet.QueryTables(1).ResultRange.Clear

If a query table has been created but not yet refreshed, accessing ResultRange causes an error. There's
no direct way to test whether a query table has been refreshed. One solution to this problem is to write a
helper function similar to the following to check if a query table has a result before accessing
ResultRange elsewhere in code:

Public Function HasResult(qt As QueryTable) As Boolean
 Dim ret As Boolean
 On Error Resume Next
 Debug.Print qt.ResultRange.Address
 If Err Then ret = False Else ret = True
 On Error GoTo 0
 HasResult = ret
End Function

Now, you can easily test if a query table has a result before clearing the result range or performing other
tasks as shown here:

Set qt = ActiveSheet.QueryTables(1)
If HasResult(qt) Then qt.ResultRange.Clear

Set this property to True to display row numbers in the first column of the specified query table. The
numbers do not display until the query table is refreshed. They will be reset each time the query table is
refreshed. The following code adds row numbers to the first query table on the active worksheet:

With ActiveSheet.QueryTables(1)
 .RowNumbers = True
 .Refresh
End With

querytable.ResetTimer

querytable.ResultRange

querytable.RowNumbers[= setting]

Page 11 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Set this property to True to save password information in an ODBC connection string with the specified
query table.

Sets or returns an array of constants specifying the data types applied to a text file being imported into
the specified query table.

True if you are using a comma delimiter when you are importing a text file into the specified query
table.

True if consecutive delimiters are treated as a single delimiter when you are importing a text file into the
specified query table.

Sets or returns the decimal separator used when you are importing a text file into the specified query
table.

Sets or returns an array of integers that correspond to the widths of the columns in the text file that you
are importing into the specified query table. The following code imports text from a sample file and
places the characters in each row of the active worksheet as follows:

The first five characters are placed in the first column.

The next four characters are placed in the second column.

The remaining characters are placed in the third column:

querytable.SavePassword[= setting]

querytable.TextFileColumnDataTypes[= setting]

querytable.TextFileCommaDelimiter[= setting]

querytable.TextFileConsecutiveDelimiter[= setting]

querytable.TextFileDecimalSeparator[= setting]

querytable.TextFileFixedColumnWidths[= setting]

Page 12 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Dim strCnn As String
Dim qt As QueryTable

strCnn = "TEXT;C:\My Documents\qtsample.txt"
Set qt = ActiveSheet.QueryTables.Add(Connection:=strCnn,& _
 Destination:=ActiveSheet.Range("A1"))
With qt
 .TextFileParseType = xlFixedWidth
 .TextFileFixedColumnWidths = Array(5, 4)
 .Refresh
End With

Sets or returns the character used as a delimiter when you are importing a text file into the specified
query table.

Set this property to xlFixedWidth if the column data in the text file you are importing into the specified
query table has a fixed width. Set this property to xlDelimited (default) if the column data in the text
file is separated by a delimiter character.

Set this property to xlMacintosh if the text file you are importing into the specified query table
originated on the Macintosh operating system. Set this property to xlMSDOS if the text file originated on
the MS-DOS operating system. Set this property to xlWindows if the text file originated on the Windows
operating system.

True if you want to be prompted for the name of the text being imported into the specified query table
each time the query table is refreshed.

True if you are using a semicolon delimiter when you are importing a text file into the specified query
table.

querytable.TextFileOtherDelimiter[= setting]

querytable.TextFileParseType[= setting]

querytable.TextFilePlatform[= setting]

querytable.TextFilePromptOnRefresh[= setting]

querytable.TextFileSemicolonDelimiter[= setting]

Page 13 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

True if you are using a space character delimiter when you are importing a text file into the specified
query table.

True if you are using a tab character delimiter when you are importing a text file into the specified query
table.

Set this property to xlTextQualifierSingleQuote if the text file you are importing into the specified
query table uses single quotes rather than double quotes to indicate what is enclosed between the quotes
is text. Set this property to xlTextQualifierNone if the file does not use quotes to indicate a text string.
Set this property to xlTextQualifierDoubleQuote (default) if the file uses double quotes as a text
qualifier.

Sets or returns the thousands separator used when you are importing a text file into the specified query
table.

True if numbers imported into the specified query table that begin with the hyphen character (-) are
treated as negative numbers. False if they are treated as text.

Sets or returns the left-to-right layout of text for text imported into the specified query table. When the
property is set to 1, layout is left-to-right. When the property is set to 2, the layout is right-to-left.

querytable.TextFileSpaceDelimiter[= setting]

querytable.TextFileTabDelimiter[= setting]

querytable.TextFileTextQualifier[= setting]

querytable.TextFileThousandsSeparator[= setting]

querytable.TextFileTrailingMinusNumbers[= setting]

querytable.TextFileVisualLayout[= setting]

12.3. Working with Parameter Objects

Page 14 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

The Parameter object lets you supply parameter criteria to limit the data returned by a query. This is
useful if you want to create a query that returns a general set of data but you want to work with different
subsets of that data or different individual records. You can supply different parameters rather than
creating a new query for each subset or record.

You create a parameter by adding a Parameter object to the Parameters collection of a QueryTable
object. You can then supply a specific parameter value or use a value in a cell on your worksheet. For
example, the following code creates a query table that uses the value in cell A1 as the parameter:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("C1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlRange, Range("A1")
qt.Refresh

12.4. Parameter Members

Use the Parameters collection to add parameters to the SQL query used by a query table. Use the
QueryTable object's Parameters property to get a reference to this collection. Use the Parameter
object to set the contents of the parameter. The Parameters collection and Parameter object have the
following members . Key members (shown in bold) are covered in the following reference section:

Add1 Application2

Count1 Creator2

DataType Delete

Item1 Name

Parent2 PromptString

RefreshOnChange SetParam
SourceRange Type

Value
1 Collection only

2 Object and collection

Page 15 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Creates a new query parameter. Returns a Parameter object.

The following code creates a query table that uses a parameter to supply the product ID to the
underlying query. The ? character is a placeholder for the query value, which in this case is the value 10
for the ProductID:

Dim strConn As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlConstant, 10
qt.Refresh

parameters.Add(Name, [iDataType])

Argument Description
Name A string that identifies the parameter.

iDataType

If you want to specify a data type for the parameter, use one of the following constants:

xlParamTypeBigInt
xlParamTypeBinary
xlParamTypeBit
xlParamTypeChar
xlParamTypeDate
xlParamTypeDecimal
xlParamTypeDouble
xlParamTypeFloat
xlParamTypeInteger
xlParamTypeLongVarBinary
xlParamTypeWChar
xlParamTypeNumeric
xlParamTypeLongVarChar
xlParamTypeReal
xlParamTypeSmallInt
xlParamTypeTime
xlParamTypeTimeStamp
xlParamTypeTinyInt
xlParamTypeUnknown
xlParamTypeVarBinary
xlParamTypeVarChar

Page 16 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Sets or returns the data type of the specified parameter. See the Add method for a list of possible values.

Deletes the specified parameter.

If the specified parameter uses a prompt string, this property returns the prompt string. The following
code creates two parameter query tables on the active worksheet and uses the same prompt string for
both:

Dim strConn As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt1 = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt1.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param1 = qt1.Parameters.Add("ProductsParam1")
param1.SetParam xlPrompt, "Please enter a Product ID."

Set qt2 = ActiveSheet.QueryTables.Add(Connection:=strConn, _
Destination:=ActiveSheet.Range("A5"))
qt2.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param2 = qt2.Parameters.Add("ProductsParam2")
param2.SetParam xlPrompt, param1.PromptString

qt1.Refresh
qt2.Refresh

If the specified parameter uses a single-cell range as a parameter value, this property refreshes the query

parameter.DataType[= setting]

parameter.Delete

parameter.PromptString[= setting]

parameter.RefreshOnChange[= setting]

Page 17 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

table whenever the cell value changes.

Defines the specified parameter. The following code creates a query table that uses the value in cell A1
as the parameter:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("C1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlRange, Range("A1")
qt.Refresh

If the specified parameter uses a single-cell range as its parameter, returns the corresponding Range
object.

Sets or returns the type of the specified parameter, either xlConstant if the parameter is a constant,
xlPrompt if it is a prompt string, or xlRange if it is a single-cell range.

Sets or returns the value of the specified parameter, either a constant, a prompt string, or a single-cell
Range object.

parameter.SetParam[= setting]

parameter.SourceRange[= setting]

parameter.Type[= setting]

parameter.Value[= setting]

12.5. Working with ADO and DAO

Page 18 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

If you want to be able to manage all the details of working with data in your worksheets, you can
manipulate data programmatically using one of the two programming interfaces: ActiveX Data Objects
(ADO) and Data Access Objects (DAO).

DAO came first. It was developed in conjunction with Microsoft Access and is the native programming
interface for the Jet database engine, the built-in data engine for Access. ADO came later, incorporating
some of the database cursor optimization that came with Microsoft's acquisition of FoxPro. It is more
flexible, better suited for high-performance applications, and designed to be more neutral in dealing with
different data sources. But, truth be told, many experienced and respected Access developers still do
most of their work in DAO.

To use either of these programming interfaces in Excel, you need to add a reference to the appropriate
object library. On the Tools menu in the VBA programming environment, select References, then select
the appropriate object library from the list.

A full discussion of ADO and DAO is beyond the scope of this book, but we will touch on some of the
key objects and members of each interface.

12.6. ADO Objects and Members

The ADO object model includes the key objects listed in the following table. There are additional
objects, but these cover the fundamentals of working with ADO. For information about the additional
objects, see the ADO Help.

Descriptions of the members of these objects follow. Key members (shown in bold) are covered in the
following reference sections.

12.6.1. ADO.Command Members

Object Description

Command Defines a specific commandsuch as a SQL statement, table name, or stored procedurethat
returns data from a data source.

Connection Represents a connection to a data source.

Field Represents a field of data from a data source.

Parameter Represents a parameter associated with a specific command.

Record Represents a single record in a recordset.

Recordset Represents a set of records from a table or command.

ActiveConnection Cancel

CommandStream CommandText

Page 19 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Sets or returns the connection used by the specified command. The following code returns a record by
executing a SQL command using the active connection:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath
cnn.Open
Set cmd.ActiveConnection = cnn
cmd.CommandText = "SELECT * FROM Employees Where EmployeeID = 9;"
Set rs = cmd.Execute

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))
qt.Refresh

ActiveSheet.Range("A1") = qt.Recordset.Source
rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

Sets or returns the command text used by the specified command. See the ActiveConnection code
example for an example of using CommandText.

CommandTimeout CommandType

CreateParameer Dialect
Execute Name

Prepared Properties

State

command.ActiveConnection[= setting]

command.CommandText[= setting]

command.CommandType[= setting]

Page 20 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Sets or returns the type of the specified command: adCmdUnspecified, adCmdText, adCmdTable,
adCmdStoredProc, adCmdUnknown, adCmdFile, or adCmdTableDirect.

Creates a new parameter for the specified command.

Executes the specified command. See the ActiveConnection code example for an example of using
Execute.

Sets or returns the name of the specified command.

12.6.2. ADO.Connection Members

Begins a transactiona series of operations performed as a whole (committed) or canceled (rolled back).
The following code wraps the code example used for the Command object's ActiveConnection method
around a transaction so that it can be committed or rolled back:

command.CreateParameter

command.Execute

command.Name[= setting]

Attributes BeginTrans

Cancel Close
CommandTimeout CommitTrans
ConnectionString ConnectionTimeout

CursorLocation DefaultDatabase

Execute IsolationLevel

Mode Open

OpenSchema Provider
RollbackTrans State
Version

connection.BeginTrans

Page 21 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath
cnn.Open
Set cmd.ActiveConnection = cnn
cnn.BeginTrans

cmd.CommandText = "SELECT * FROM Employees Where EmployeeID = 9;"
Set rs = cmd.Execute

' Prompt user to commit all changes made
If MsgBox("Save all changes?", vbYesNo) = vbYes Then
 cnn.CommitTrans
 Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))
 qt.Refresh
 ActiveSheet.Range("A1") = qt.Recordset.Source
Else
 cnn.RollbackTrans
End If

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

Cancels the specified connection object's last Execute or Open operation.

Specifies the time to wait, in seconds, while executing a command on the specified connection before
terminating it.

Saves any changes made during a transaction. See the BeginTrans code example for an example of
using CommitTrans.

connection.Cancel

connection.CommandTimeout[= setting]

connection.CommitTrans

Page 22 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Specifies the connection string used to connect to a data source. See the BeginTrans code example for
an example of using ConnectionString.

Specifies the time to wait, in seconds, while establishing a connection before terminating it.

Opens the specified connection. See the BeginTrans code example for an example of using Open.

Cancels any changes made during a transaction. See the BeginTrans code example for an example of
using RollbackTrans.

Returns the ADO version number.

12.6.3. ADO.Field and ADO.Fields Members

connection.ConnectionString[= setting]

connection.ConnectionTimeout[= setting]

connection.Open

connection.RollbackTrans

connection.Version[= setting]

ActualSize Append1

AppendChunk Attributes

CancelUpdate1 Count1

DefinedSize Delete1

GetChunk Item1

Name NumericScale

OriginalValue Precision

Refresh1 Resync1

Status Type

Page 23 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Returns the actual size of the data in a field. Use the DefinedSize property to return the size of data that
the field is capable of holding.

Appends data to a large text or binary field.

Cancels any updates made to the specified Fields collection.

Returns the size of data that the field is capable of holding. Use the ActualSize property to return the
actual size of the data in a field.

Returns all or a specified portion of a large text or binary file.

Sets or returns the number of decimal places to use for numeric values.

UnderlyingValue Update1

Value
1 Collection only

field.ActualSize[= setting]

field.AppendChunk

fields.CancelUpdate

field.DefinedSize[= setting]

field.GetChunk(Size)

Argument Description
Size The number of bytes or characters that you want to return

field.NumericScale[= setting]

Page 24 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Returns the value of a field before any changes were made. Use this property with the
UnderlyingValue property in a multiuser environment when you want to make sure that you are using
the most current data.

Returns the current value of a field. Use this property with the OriginalValue property in a multiuser
environment when you want to make sure that you are using the most current data.

Sets or returns the value of data stored in the specified field.

12.6.4. ADO.Parameter and ADO.Parameters Members

Appends data to a large text or binary field.

field.OriginalValue[= setting]

field.UnderlyingValue[= setting]

field.Value[= setting]

Append1 AppendChunk

Attributes Count1

Delete1 Direction

Item1 Name

NumericScale Precision

Properties Refresh1

Size Type
Value
1 Collection only

Parameter.AppendChunk

Parameter.Name[= setting]

Page 25 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Sets or returns the name of the specified parameter.

Sets or returns the number of numeric decimal places in the specified parameter.

Sets or returns the maximum number of digits in a numeric parameter value.

Sets or returns the maximum size of the specified parameter, in bytes or characters.

Sets or returns the parameter's value.

12.6.5. ADO.Record Members

Sets or returns the connection used by the specified record.

Parameter.NumericScale[= setting]

Parameter.Precision[= setting]

parameter.Size[= setting]

parameter.Value[= setting]

ActiveConnection Cancel

Close CopyRecord

DeleteRecord GetChildren

Mode MoveRecord
Open ParentURL

Properties RecordType

Source State

record.ActiveConnection[= setting]

record.Cancel

Page 26 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Cancels a pending CopyRecord, DeleteRecord, MoveRecord, or Open operation.

Returns a Recordset object whose rows are children of the specified record in a parent-child
relationship.

Opens the record.

Returns the Record object type, either adSimpleRecord, adCollectionRecord, adRecordUnknown, or
adStructDoc.

record.GetChildren

record.Open([Source], [ActiveConnection], [Mode]), [CreateOptions],
[Options], [UserName], [Password])

Argument Description

Source If the record source has not already been specified, you can specify a Command,
Record, or Recordset object; table; or SQL statement as the source.

ActiveConnection If the connection has not already been specified, you can specify a Connection
object or connect stiring.

Mode

If the mode has not already been specified, you can specify a ConnectModeEnum
constant value that specifies the access mode. The value can be adModeRead,
adModeReadWrite, adModeRecursive, adModeShareDenyNone,
adModeShareDenyRead, adModeShareDenyWrite, adModeShareExclusive,
adModeUnknown, adModeWrite.

CreateOptions Lets you specify whether an existing file or directory should be opened or a new
file or directory should be created.

Options
Lets you specify options for opening the record. The value can be
adDelayFetchFields, adDelayFetchStream, adOpenAsync,
adOpenExecuteCommand, adOpenRecordUnspecified, or adOpenOutput.

UserName Lets you specify a username granting access to Source.

Password Lets you specify a password for the username.

record.RecordType

Page 27 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Sets or returns the data source for the record.

Returns the state of the record, either adStateClosed, adStateOpen, adStateConnecting,
adStateExecuting, or adStateFetching.

12.6.6. ADO.Recordset Members

record.Source[= setting]

record.State

AbsolutePage AbsolutePosition

ActiveCommand ActiveConnection
AddNew BOF

Bookmark CacheSize
Cancel CancelBatch
CancelUpdate Clone

Close CompareBookmarks

CursorLocation CursorType

DataMember DataSource
Delete EditMode
EOF Filter

Find GetRows

GetString Index

LockType MarshalOptions

MaxRecords Move
MoveFirst MoveLast
MoveNext MovePrevious

NextRecordset Open

PageCount PageSize
RecordCount Requery

Resync Save

Seek Sort
Source State

Page 28 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Sets or returns the ordinal position of the current record in the recordset.

Returns the Command object used to create the recordset.

Sets or returns the connection string or Connection object used by the recordset.

Creates a new record.

The following code adds a new record to the Employees table in the Northwind Traders sample database
using cell values on the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim strConnect As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Status StayInSync

Supports Update

UpdateBatch

recordset.AbsolutePosition[= setting]

recordset.ActiveCommand[= setting]

recordset.ActiveConnection [= setting]

recordset.AddNew([FieldList], [Values])

Argument Description

FieldList A single field name or an array of names or ordinal numbers specifying the fields in the
new record

Values A single field value or an array of values for the fields

Page 29 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Employees", cnn, adOpenDynamic, adLockOptimistic, adCmdTable

rs.AddNew
rs!LastName = ActiveSheet.Range("B4")
rs!FirstName = ActiveSheet.Range("C4")
rs.Update

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

True if the current record position is before the first record in the recordset.

Cancels the last Open operation for the recordset.

Cancels any pending changes for the current record.

Deletes the current record or a group of records.

True if the current record position is after the last record in the recordset. The following code uses the

recordset.BOF[= setting]

recordset.Cancel

recordset.CancelUpdate

recordset.Delete([AffectRecords])

Argument Description

AffectRecords A constant that specifies the records affected by the delete operation, either
adAffectAll, adAffectAllChapters, adAffectCurrent, or adAffectGroup.

recordset.EOF[= setting]

Page 30 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

EOF property to test for the end of the recordset, adding names from the Employees table in the
Northwind Traders sample database to the first column of the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim intIdx As Integer

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Employees", cnn, adOpenStatic, adLockReadOnly, adCmdTable

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!FirstName & " " & rs!LastName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

Sets or returns a filter for the recordset. You can use filters to work with different sets of data in a table
without having to open separate recordsets. The following code adds product names for all beverages
from the Products table in the Northwind Traders sample database to the first column of the current
worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim intIdx As Integer

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open

recordset.Filter[= setting]

Page 31 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

rs.Open "Products", cnn, adOpenStatic, adLockReadOnly, adCmdTable
rs.Filter = "CategoryID = 1"

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!ProductName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

Moves to the first record in the recordset.

Moves to the last record in the recordset.

Moves to the next record in the recordset. See the EOF and Filter code examples for examples of using
MoveNext.

Moves to the previous record in the recordset.

Opens the recordset for database operations.

recordset.MoveFirst

recordset.MoveLast

recordset.MoveNext

recordset.MovePrevious

recordset.Open([Source], [ActiveConnection], [CursorType] ,
[LockType] , [Options])

Argument Description

Page 32 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Returns the number of records in the recordset.

Updates the recordset by running the query on which it is based.

Returns a string or Command object indicating the source of the recordset.

Saves changes made to the current record.

See the AddNew code example for an example of using Update.

Source
The source of the recordset. The source can be a Command object, an SQL
statement, a table name, a stored procedure call, a URL, or the name of a file or
Stream object.

ActiveConnection A Connection object or connection string.

CursorType
The type of database cursor to use for the recordset. The cursor can be
adOpenDynamic, adOpenForwardOnly (default), adOpenKeyset,
adOpenStatic, or adOpenUnspecified.

LockType
The type of locking to use for the recordset. The cursor can be
adLockBatchOptimistic, adLockOptimistic, adLockPessimistic,
adLockReadOnly, or adLockUnspecified.

Options A constant specifying how a command source should be interpreted or executed.

recordset.RecordCount[= setting]

recordset.Requery

recordset.Source[= setting]

recordset.Update([Fields], [Value])

Argument Description

Fields The name of the field being updated or an array of names or ordinal positions if you are
updating multiple fields

Value The updated value of the field or an array of values if you are updating multiple fields

Page 33 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

12.7. DAO Objects and Members

The DAO object model includes the key objects listed in the following table. There are additional
objects, but these cover the fundamentals of working with DAO. For information about the additional
objects, see the DAO Help.

Descriptions of the members of these objects follow. Key members (shown in bold) are covered in the
following reference sections.

Object Description

Database/Databases The Database object represents an open database. The Databases
collection contains all open databases.

DbEngine Represents the Jet database engine. It is the top-level object in the DAO
object model.

Document/Documents
The Document object represents information about an instance of a
Microsoft Access object, such as a form or report. The Documents collection
contains all the Document objects of the same type.

QueryDef/QueryDefs The QueryDef object represents a Microsoft Access query. The QueryDefs
collection contains all the queries in a database.

Recordset/Recordsets The Recordset object represents a set of records from a table or query. The
Recordsets collection contains all open recordsets in a database.

12.8. DAO.Database and DAO.Databases Members

Close CollatingOrder

Connect Connection

Containers Count1

CreateProperty CreateQueryDef

CreateRelation CreateTableDef

DesignMasterID Execute

MakeReplica Name

NewPassword OpenRecordset

PopulatePartial Properties

Page 34 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Returns the Connection object for the database.

Executes an action query or SQL statement.

Opens the record.

QueryTimeout RecordsAffected

Refresh1 Relations

ReplicaID Synchronize

Transactions Updatable

Version
1 Collection only

database.Connection

database.Execute(Source, [Options])

Argument Description
Source An SQL statement or the name of a query.

Options A combination of constants that specify characteristics of the recordset. See DAO Help
for more information about these options.

database.OpenRecordset(Source, [Type], [Options]), [LockEdits])

Argument Description
Source The source of the recordset: a table name, query name, or SQL statement.

Type The type of recordset to open: dbOpenTable, dbOpenDynamic, dbOpenDynaset,
dbOpenSnapshot, or dbOpenForwardOnly.

Options A combination of constants that specify characteristics of the recordset. See DAO Help
for more information about these options.

LockEdits The locking used by the recordset: dbReadOnly, dbPessimistic, dbOptimistic,
dbOptimisticValue, or dbOptimisticBatch.

Page 35 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

The following code example opens the Employees table in the Northwind Traders sample database as a
recordset and displays its contents on the active sheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

12.8.1. DAO.DbEngine Members

Copies and compacts a database. The database must be closed.

BeginTrans CommitTrans
CompactDatabase CreateDatabase

CreateWorkspace DefaultPassword

DefaultType DefaultUser

Errors Idle

IniPath LoginTimeout

OpenConnection OpenDatabase

Properties RegisterDatabase

Rollback SetOption

SystemDB Version

Workspaces

dbengine.CompactDatabase(olddb, newdb, [locale]), [options] ,
[password])

Argument Description

Page 36 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Copies and compacts a database. The database must be closed.

See the Database.OpenRecordset method for an example of using OpenDatabase. Note that you use
the OpenDatabase method without explicitly specifying the DbEngine object.

olddb The name and path of the existing database file.
newdb The name and path of the compacted database file.

locale An optional collating order used in creating the compacted database file. See DAO Help
for more information about collating order settings.

options A combination of constants that specify characteristics of the recordset. See DAO Help
for more information about these options.

password An optional password string.

dbengine.OpenDatabase(dbname, [options], [read-only], [connect])

Argument Description
dbname The name and path of the existing database file.

options A combination of constants that specify characteristics of the recordset. See DAO Help
for more information about these options.

read-only Use True if you want to open the database for read-only access.
connect A connection string.

12.9. DAO.Document and DAO.Documents Members

AllPermissions Container

Count1 CreateProperty

DateCreated LastUpdated
Name Owner

Permissions Properties

Refresh1 UserName

1 Collection only

Page 37 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Returns the name of the container to which the document belongs.

Returns the name of the specified table, query, form, or report. The following code example displays the
names of all the reports in the Northwind Traders sample database in the first column of the active
worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim docRpt As DAO.Document
Dim intIdx As Integer

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
intIdx = 0
With db.Containers!Reports
 For Each docRpt In .Documents
 ActiveSheet.Cells(intIdx + 1, 1) = .Documents(intIdx).Name
 intIdx = intIdx + 1
 Next docRpt

End With

Document.Container

Document.Name

12.10. DAO.QueryDef and DAO.QueryDefs Members

Append1 CacheSize

Cancel Close

Connect Count1

CreateProperty DateCreated

Delete1 Execute

LastUpdated MaxRecords

Name ODBCTimeout
OpenRecordset Prepare

Page 38 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Executes the specified action query.

For and ODBC data source, returns the maximum number of records to return from the query.

Opens the record.

The following code example displays the contents of the recordset produced by the Invoices query in the
Northwind Traders sample database on the active sheet:

Dim strDbPath As String

RecordsAffected Refresh1

ReturnsRecords SQL

StillExecuting Type

Updatable
1 Collection only

querydef.Execute([Options])

Argument Description

Options A combination of constants that specify characteristics of the recordset. See DAO Help
for more information about these options.

querydef.MaxRecords[= setting]

querydef.OpenRecordset([Type], [Options]), [LockEdits])

Argument Description

Type The type of recordset to open: dbOpenTable, dbOpenDynamic, dbOpenDynaset,
dbOpenSnapshot, or dbOpenForwardOnly.

Options A combination of constants that specify characteristics of the recordset. See DAO Help
for more information about these options.

LockEdits The locking used by the recordset: dbReadOnly, dbPessimistic, dbOptimistic,
dbOptimisticValue, or dbOptimisticBatch.

Page 39 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Dim db As DAO.Database
Dim qry As DAO.QueryDef
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set qry = db.QueryDefs("Invoices")
Set rs = qry.OpenRecordset

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A1"))

qt.Refresh

Sets or returns the query's SQL string.

querydef.SQL[= setting]

12.11. DAO.Recordset and DAO.Recordsets Members

AbsolutePosition AddNew BatchCollisionCount

BatchCollisions BatchSize BOF

Bookmark Bookmarkable CacheSize

CacheStart Cancel CancelUpdate

Clone Close Connection

CopyQueryDef Count1 DateCreated

Delete Edit EditMode
EOF FillCache Filter

FindFirst FindLast FindNext

FindPrevious GetRows Index

LastModified LastUpdated LockEdits

Move MoveFirst MoveLast

MoveNext MovePrevious Name

NextRecordset NoMatch OpenRecordset

PercentPosition RecordCount RecordStatus

Page 40 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Adds a new record to the recordset. The following code adds a new record to the Employees table in the
Northwind Traders sample database using cell values on the current worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

rs.AddNew
rs!LastName = ActiveSheet.Range("B4")
rs!FirstName = ActiveSheet.Range("C4")
rs.Update

True if the current record position is before the first record in the recordset.

True if the current record position is after the last record in the recordset. The following code uses the
EOF property to test for the end of the recordset, adding names from the Employees table in the
Northwind Traders sample database to the first column of the current worksheet:

recordset.MoveFirst Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Refresh1 Requery Restartable

Seek Sort StillExecuting

Transactions Type Updatable

Update UpdateOptions ValidationRule

ValidationText
1 Collection only

recordset.AddNew

recordset.BOF[= setting]

recordset.EOF[= setting]

Page 41 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!FirstName & " " & rs!LastName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

Moves to the first record in the recordset.

Moves to the last record in the recordset.

Moves to the next record in the recordset. See the EOF code example for an example of using MoveNext.

Moves to the previous record in the recordset.

recordset.MoveFirst

recordset.MoveLast

recordset.MoveNext

recordset.MovePrevious

Page 42 of 42Chapter 12. Loading and Manipulating Data

11/3/2007file://C:\Documents and Settings\ttphong\Local Settings\Temp\~hh9CDB.htm

